MongoDB
 sql >> Database >  >> NoSQL >> MongoDB

Query per la corrispondenza delle date all'interno dell'array

Ti manca il $elemMatch operatore sulla query di base e $filter che hai tentato con il framework di aggregazione ha in realtà una sintassi errata.

Quindi restituire il documento che corrisponde alle date che si trovano all'interno di quell'intervallo nell'array è:

// Simulating the date values
var start = new Date("2018-06-01"); // otherwise new Date(req.params.start)
var end = new Date("2018-07-01");   // otherwise new Date(req.params.end)

myColl.find({ 
  "_id": req.params.id,
  "someArray": {
    "$elemMatch": {  "$gte": start, "$lt": end  }
  }
}).then( doc => {
  // do something with matched document
}).catch(e => { console.err(e); res.send(e); })

Il filtraggio degli elementi dell'array effettivi da restituire è:

// Simulating the date values
var start = new Date("2018-06-01");
var end = new Date("2018-07-01");

myColl.aggregate([
  { "$match": { 
    "_id": mongoose.Types.ObjectId(req.params.id),
    "someArray": {
      "$elemMatch": { "$gte": start, "$lt": end }
    }
  }},
  { "$project": {
    "name": 1,
    "someArray": {
      "$filter": {
        "input": "$someArray",
        "cond": {
          "$and": [
            { "$gte": [ "$$this.Timestamp", start ] }
            { "$lt": [ "$$this.Timestamp", end ] }
          ]
        }
      }
    }
  }}
]).then( docs => {
  /* remember aggregate returns an array always, so if you expect only one
   * then it's index 0
   *
   * But now the only items in 'someArray` are the matching ones, so you don't need 
   * the code you were writing to just pull out the matching ones
   */
   console.log(docs[0].someArray);
  
}).catch(e => { console.err(e); res.send(e); })

Le cose da tenere a mente sono quelle in aggregate() devi effettivamente "trasmettere" il ObjectId valore, perché Mongoose "autocasting" non funziona qui. Normalmente mongoose legge dallo schema per determinare come eseguire il cast dei dati, ma poiché le pipeline di aggregazione "modificano le cose", ciò non accade.

Il $elemMatch è presente perché come dice la documentazione :

In breve $gte e $lt sono una condizione AND e contano come "due", quindi il semplice modulo "notazione punto" non si applica. È anche $lt e non $lte , poiché ha più senso essere "meno del" "giorno successivo" piuttosto che cercare l'uguaglianza fino all'"ultimo millisecondo".

Il $filter ovviamente fa esattamente quello che suggerisce il nome e "filtra" il contenuto effettivo dell'array in modo che vengano lasciati solo gli elementi corrispondenti.

Dimostrazione

L'elenco completo della dimostrazione crea due documenti, uno con solo due elementi dell'array che corrispondono effettivamente all'intervallo di date. La prima query mostra che il documento corretto corrisponde all'intervallo. La seconda mostra il "filtraggio" dell'array:

const { Schema, Types: { ObjectId } } = mongoose = require('mongoose');

const uri = 'mongodb://localhost/test';

mongoose.Promise = global.Promise;
mongoose.set('debug',true);

const subSchema = new Schema({
  timestamp: Date,
  other: String
});

const testSchema = new Schema({
  name: String,
  someArray: [subSchema]
});

const Test = mongoose.model('Test', testSchema, 'filtertest');

const log = data => console.log(JSON.stringify(data, undefined, 2));

const startDate = new Date("2018-06-01");
const endDate = new Date("2018-07-01");

(function() {

  mongoose.connect(uri)
    .then(conn =>
      Promise.all(Object.entries(conn.models).map(([k,m]) => m.remove()))
    )
    .then(() =>
      Test.insertMany([
        {
          _id: "5b1522f5cdac0b6da18f7618",
          name: 'A',
          someArray: [
            { timestamp: new Date("2018-06-01"), other: "C" },
            { timestamp: new Date("2018-07-04"), other: "D" },
            { timestamp: new Date("2018-06-10"), other: "E" }
          ]
        },
        {
          _id: "5b1522f5cdac0b6da18f761c",
          name: 'B',
          someArray: [
            { timestamp: new Date("2018-07-04"), other: "D" },
          ]
        }
      ])
    )
    .then(() =>
      Test.find({
        "someArray": {
          "$elemMatch": {
            "timestamp": { "$gte": startDate, "$lt": endDate }
          }
        }
      }).then(docs => log({ docs }))
    )
    .then(() =>
      Test.aggregate([
        { "$match": {
          "_id": ObjectId("5b1522f5cdac0b6da18f7618"),
          "someArray": {
            "$elemMatch": {
              "timestamp": { "$gte": startDate, "$lt": endDate }
            }
          }
        }},
        { "$addFields": {
          "someArray": {
            "$filter": {
              "input": "$someArray",
              "cond": {
                "$and": [
                  { "$gte": [ "$$this.timestamp", startDate ] },
                  { "$lt": [ "$$this.timestamp", endDate ] }
                ]
              }
            }
          }
        }}
      ]).then( filtered => log({ filtered }))
    )
    .catch(e => console.error(e))
    .then(() => mongoose.disconnect());

})()

O un po' più moderno con async/await sintassi:

const { Schema, Types: { ObjectId } } = mongoose = require('mongoose');

const uri = 'mongodb://localhost/test';

mongoose.Promise = global.Promise;
mongoose.set('debug',true);

const subSchema = new Schema({
  timestamp: Date,
  other: String
});

const testSchema = new Schema({
  name: String,
  someArray: [subSchema]
});

const Test = mongoose.model('Test', testSchema, 'filtertest');

const log = data => console.log(JSON.stringify(data, undefined, 2));

(async function() {

  try {

    const startDate = new Date("2018-06-01");
    const endDate = new Date("2018-07-01");

    const conn = await mongoose.connect(uri);

    // Clean collections
    await Promise.all(Object.entries(conn.models).map(([k,m]) => m.remove()));

    // Create test items

    await Test.insertMany([
      {
        _id: "5b1522f5cdac0b6da18f7618",
        name: 'A',
        someArray: [
          { timestamp: new Date("2018-06-01"), other: "C" },
          { timestamp: new Date("2018-07-04"), other: "D" },
          { timestamp: new Date("2018-06-10"), other: "E" }
        ]
      },
      {
        _id: "5b1522f5cdac0b6da18f761c",
        name: 'B',
        someArray: [
          { timestamp: new Date("2018-07-04"), other: "D" },
        ]
      }
    ]);



    // Select matching 'documents'
    let docs = await Test.find({
      "someArray": {
        "$elemMatch": {
          "timestamp": { "$gte": startDate, "$lt": endDate }
        }
      }
    });
    log({ docs });

    let filtered = await Test.aggregate([
      { "$match": {
        "_id": ObjectId("5b1522f5cdac0b6da18f7618"),
        "someArray": {
          "$elemMatch": {
            "timestamp": { "$gte": startDate, "$lt": endDate }
          }
        }
      }},
      { "$addFields": {
        "someArray": {
          "$filter": {
            "input": "$someArray",
            "cond": {
              "$and": [
                { "$gte": [ "$$this.timestamp", startDate ] },
                { "$lt": [ "$$this.timestamp", endDate ] }
              ]
            }
          }
        }
      }}
    ]);
    log({ filtered });

    mongoose.disconnect();

  } catch(e) {
    console.error(e)
  } finally {
    process.exit()
  }

})()

Entrambi sono uguali e danno lo stesso output:

Mongoose: filtertest.remove({}, {})
Mongoose: filtertest.insertMany([ { _id: 5b1522f5cdac0b6da18f7618, name: 'A', someArray: [ { _id: 5b1526952794447083ababf6, timestamp: 2018-06-01T00:00:00.000Z, other: 'C' }, { _id: 5b1526952794447083ababf5, timestamp: 2018-07-04T00:00:00.000Z, other: 'D' }, { _id: 5b1526952794447083ababf4, timestamp: 2018-06-10T00:00:00.000Z, other: 'E' } ], __v: 0 }, { _id: 5b1522f5cdac0b6da18f761c, name: 'B', someArray: [ { _id: 5b1526952794447083ababf8, timestamp: 2018-07-04T00:00:00.000Z, other: 'D' } ], __v: 0 } ], {})
Mongoose: filtertest.find({ someArray: { '$elemMatch': { timestamp: { '$gte': new Date("Fri, 01 Jun 2018 00:00:00 GMT"), '$lt': new Date("Sun, 01 Jul 2018 00:00:00 GMT") } } } }, { fields: {} })
{
  "docs": [
    {
      "_id": "5b1522f5cdac0b6da18f7618",
      "name": "A",
      "someArray": [
        {
          "_id": "5b1526952794447083ababf6",
          "timestamp": "2018-06-01T00:00:00.000Z",
          "other": "C"
        },
        {
          "_id": "5b1526952794447083ababf5",
          "timestamp": "2018-07-04T00:00:00.000Z",
          "other": "D"
        },
        {
          "_id": "5b1526952794447083ababf4",
          "timestamp": "2018-06-10T00:00:00.000Z",
          "other": "E"
        }
      ],
      "__v": 0
    }
  ]
}
Mongoose: filtertest.aggregate([ { '$match': { _id: 5b1522f5cdac0b6da18f7618, someArray: { '$elemMatch': { timestamp: { '$gte': 2018-06-01T00:00:00.000Z, '$lt': 2018-07-01T00:00:00.000Z } } } } }, { '$addFields': { someArray: { '$filter': { input: '$someArray', cond: { '$and': [ { '$gte': [ '$$this.timestamp', 2018-06-01T00:00:00.000Z ] }, { '$lt': [ '$$this.timestamp', 2018-07-01T00:00:00.000Z ] } ] } } } } } ], {})
{
  "filtered": [
    {
      "_id": "5b1522f5cdac0b6da18f7618",
      "name": "A",
      "someArray": [
        {
          "_id": "5b1526952794447083ababf6",
          "timestamp": "2018-06-01T00:00:00.000Z",
          "other": "C"
        },
        {
          "_id": "5b1526952794447083ababf4",
          "timestamp": "2018-06-10T00:00:00.000Z",
          "other": "E"
        }
      ],
      "__v": 0
    }
  ]
}