Potresti usare una variabile:è molto più veloce di qualsiasi join:
SELECT
id,
size,
@total := @total + size AS cumulativeSize,
FROM table, (SELECT @total:=0) AS t;
Ecco un breve test case su un Pentium III con 128 MB di RAM con Debian 5.0:
Crea la tabella:
DROP TABLE IF EXISTS `table1`;
CREATE TABLE `table1` (
`id` int(11) NOT NULL auto_increment,
`size` int(11) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
Riempi con 20.000 numeri casuali:
DELIMITER //
DROP PROCEDURE IF EXISTS autofill//
CREATE PROCEDURE autofill()
BEGIN
DECLARE i INT DEFAULT 0;
WHILE i < 20000 DO
INSERT INTO table1 (size) VALUES (FLOOR((RAND() * 1000)));
SET i = i + 1;
END WHILE;
END;
//
DELIMITER ;
CALL autofill();
Controlla il conteggio delle righe:
SELECT COUNT(*) FROM table1;
+----------+
| COUNT(*) |
+----------+
| 20000 |
+----------+
Esegui la query del totale cumulativo:
SELECT
id,
size,
@total := @total + size AS cumulativeSize
FROM table1, (SELECT @total:=0) AS t;
+-------+------+----------------+
| id | size | cumulativeSize |
+-------+------+----------------+
| 1 | 226 | 226 |
| 2 | 869 | 1095 |
| 3 | 668 | 1763 |
| 4 | 733 | 2496 |
...
| 19997 | 966 | 10004741 |
| 19998 | 522 | 10005263 |
| 19999 | 713 | 10005976 |
| 20000 | 0 | 10005976 |
+-------+------+----------------+
20000 rows in set (0.07 sec)
AGGIORNAMENTO
Mi ero perso il raggruppamento per groupId nella domanda originale e questo ha sicuramente reso le cose un po' più complicate. Ho quindi scritto una soluzione che utilizzava una tabella temporanea, ma non mi piaceva:era disordinata ed eccessivamente complicata. Sono andato via e ho fatto altre ricerche e ho trovato qualcosa di molto più semplice e veloce.
Non posso rivendicare tutto il merito per questo, in effetti, posso a malapena rivendicarne alcuno, poiché è solo una versione modificata di Emula il numero di riga da Query MySQL comuni .
È meravigliosamente semplice, elegante e molto veloce:
SELECT fileInfoId, groupId, name, size, cumulativeSize
FROM (
SELECT
fileInfoId,
groupId,
name,
size,
@cs := IF(@prev_groupId = groupId, @cs+size, size) AS cumulativeSize,
@prev_groupId := groupId AS prev_groupId
FROM fileInfo, (SELECT @prev_groupId:=0, @cs:=0) AS vars
ORDER BY groupId
) AS tmp;
Puoi rimuovere il SELECT ... AS tmp
esterno se non ti dispiace il prev_groupID
colonna restituita. Ho scoperto che funzionava leggermente più veloce senza di essa.
Ecco un semplice test case:
INSERT INTO `fileInfo` VALUES
( 1, 3, 'name0', '10'),
( 5, 3, 'name1', '10'),
( 7, 3, 'name2', '10'),
( 8, 1, 'name3', '10'),
( 9, 1, 'name4', '10'),
(10, 2, 'name5', '10'),
(12, 4, 'name6', '10'),
(20, 4, 'name7', '10'),
(21, 4, 'name8', '10'),
(25, 5, 'name9', '10');
SELECT fileInfoId, groupId, name, size, cumulativeSize
FROM (
SELECT
fileInfoId,
groupId,
name,
size,
@cs := IF(@prev_groupId = groupId, @cs+size, size) AS cumulativeSize,
@prev_groupId := groupId AS prev_groupId
FROM fileInfo, (SELECT @prev_groupId := 0, @cs := 0) AS vars
ORDER BY groupId
) AS tmp;
+------------+---------+-------+------+----------------+
| fileInfoId | groupId | name | size | cumulativeSize |
+------------+---------+-------+------+----------------+
| 8 | 1 | name3 | 10 | 10 |
| 9 | 1 | name4 | 10 | 20 |
| 10 | 2 | name5 | 10 | 10 |
| 1 | 3 | name0 | 10 | 10 |
| 5 | 3 | name1 | 10 | 20 |
| 7 | 3 | name2 | 10 | 30 |
| 12 | 4 | name6 | 10 | 10 |
| 20 | 4 | name7 | 10 | 20 |
| 21 | 4 | name8 | 10 | 30 |
| 25 | 5 | name9 | 10 | 10 |
+------------+---------+-------+------+----------------+
Ecco un esempio delle ultime righe da una tabella di 20.000 righe:
| 19481 | 248 | 8CSLJX22RCO | 1037469 | 51270389 |
| 19486 | 248 | 1IYGJ1UVCQE | 937150 | 52207539 |
| 19817 | 248 | 3FBU3EUSE1G | 616614 | 52824153 |
| 19871 | 248 | 4N19QB7PYT | 153031 | 52977184 |
| 132 | 249 | 3NP9UGMTRTD | 828073 | 828073 |
| 275 | 249 | 86RJM39K72K | 860323 | 1688396 |
| 802 | 249 | 16Z9XADLBFI | 623030 | 2311426 |
...
| 19661 | 249 | ADZXKQUI0O3 | 837213 | 39856277 |
| 19870 | 249 | 9AVRTI3QK6I | 331342 | 40187619 |
| 19972 | 249 | 1MTAEE3LLEM | 1027714 | 41215333 |
+------------+---------+-------------+---------+----------------+
20000 rows in set (0.31 sec)