Quando il carico di lavoro del database è sovraccaricato, devi prima esaminare quali query sono in esecuzione nel tentativo di vedere il modello della query. Scrive pesante? Leggi pesante? Dov'è il collo di bottiglia?
Identificazione dei problemi di query
Per capirlo, puoi abilitare il log generale o il log lento per provare a catturare le query in esecuzione e scrivere nel file. Puoi anche leggere dal registro binario (poiché il registro binario acquisisce tutte le modifiche nel database) e guardare le letture direttamente dall'elenco di processi in esecuzione nel database. Puoi persino acquisire la query dal punto di vista della rete esaminando tcpdump.
Cosa fare dopo? È possibile analizzare la query scritta nel file di registro generale, nel file di registro lento, nel registro binario per verificare se è in corso qualcosa di interessante (ad es. collo di bottiglia nella query).
Percona ha uno strumento per analizzare questi tipi di query, chiamato pt-query-digest. È incluso quando si installa Percona Toolkit, una raccolta di strumenti di utilità che aiutano DBA a gestire i propri database. In questo blog daremo un'occhiata a questo strumento e a come si confronta con le funzionalità di gestione delle query di ClusterControl.
Procedura di installazione
I repository Percona supportano due pacchetti Linux Distribution per l'installazione, che è una distribuzione di pacchetti basata su Debian e RPM. L'installazione è semplice come mostrato di seguito:
Pacchetto basato su Debian (Ubuntu, Debian)
Configura i repository dei pacchetti Percona scaricando il pacchetto
wget https://repo.percona.com/apt/percona-release_latest.generic_all.deb
E poi installa il pacchetto scaricato usando dpkg
sudo dpkg -i percona-release_latest.generic_all.deb
Dopodiché, esegui l'installazione dal gestore pacchetti
sudo apt-get install percona-toolkit
Pacchetto basato su RPM (RHEL, CentOS, Oracle Enterprise Linux, Amazon AMI)
Configura i repository dei pacchetti Percona installando direttamente il pacchetto rpm.
sudo yum install https://repo.percona.com/yum/percona-release-latest.noarch.rpm
Dopodiché, esegui l'installazione dal gestore pacchetti
sudo apt-get install percona-toolkit
Le utility Percona verranno installate nella tua macchina e devi solo usarle.
Analisi del carico di lavoro della query
Ci sono diversi modi per generare le statistiche dal carico di lavoro della query utilizzando pt-query-digest, di seguito è riportato il comando come farlo utilizzando un file di query lento, un file generale, mostra l'elenco di processi nel database e leggi il log binario.
Genera dal database show processlist
pt-query-digest --processlist h=localhost,D=sbt,u=sbtest,p=12qwaszx --output slowlog > /tmp/slow_query.log
Genera dai file di query lenti / file di query generali
pt-query-digest mysql-slow.log > /tmp/slow_query.log
Genera da log binario. Prima di eseguire pt-query-digest, è necessario estrarre il registro binario in un formato leggibile utilizzando mysqlbinlog. Non dimenticare di aggiungere l'opzione --type e digita binlog come sorgente.
pt-query-digest --type binlog mysql-bin.000001.txt > slow_query.log
Al termine della generazione del file, vedrai il rapporto come mostrato di seguito:
# 12s user time, 170ms system time, 27.44M rss, 221.79M vsz
# Current date: Sun May 10 21:40:47 2020
# Hostname: n2
# Files: mysql-1
# Overall: 94.92k total, 47 unique, 2.79k QPS, 27.90x concurrency ________
# Time range: 2020-05-10 21:39:37 to 21:40:11
# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======
# Exec time 949s 6us 1s 10ms 42ms 42ms 2ms
# Lock time 31s 0 1s 327us 80us 11ms 22us
# Rows sent 69.36k 0 490 0.75 0.99 11.30 0
# Rows examine 196.34k 0 490 2.12 0.99 21.03 0.99
# Rows affecte 55.28k 0 15 0.60 0.99 1.26 0
# Bytes sent 13.12M 11 6.08k 144.93 299.03 219.02 51.63
# Query size 15.11M 5 922 166.86 258.32 83.13 174.84
# Profile
# Rank Query ID Response time Calls R/Call V/M Ite
# ==== ============================= ============== ===== ====== ===== ===
# 1 0xCE367F5CFFCAF46E816F682E... 162.6485 17.1% 199 0.8173 0.03 SELECT order_line? stock?
# 2 0x360F872745C81781F8F75EDE... 107.4898 11.3% 14837 0.0072 0.02 SELECT stock?
# 3 0xE0CE1933D0392DA3A42FAA7C... 102.2281 10.8% 14866 0.0069 0.03 SELECT item?
# 4 0x492B86BCB2B1AE1278147F95... 98.7658 10.4% 14854 0.0066 0.04 INSERT order_line?
# 5 0x9D086C2B787DC3A308043A0F... 93.8240 9.9% 14865 0.0063 0.02 UPDATE stock?
# 6 0x5812BF2C6ED2B9DAACA5D21B... 53.9681 5.7% 1289 0.0419 0.05 UPDATE customer?
# 7 0x51C0DD7AF0A6D908579C28C0... 44.3869 4.7% 864 0.0514 0.03 SELECT customer?
# 8 0xFFFCA4D67EA0A788813031B8... 41.2123 4.3% 3250 0.0127 0.01 COMMIT
# 9 0xFDDEE3813C59881488D9C47F... 36.0707 3.8% 1180 0.0306 0.02 UPDATE customer?
# 10 0x8FBBE0AFA061755CCC1C27AB... 31.6417 3.3% 1305 0.0242 0.03 UPDATE orders?
# 11 0x8AA6EB56551923DB9A49E40A... 23.3281 2.5% 1522 0.0153 0.04 SELECT customer? warehouse?
# 12 0xF34C10B3DA8DB048A630D4C7... 21.1662 2.2% 1305 0.0162 0.03 UPDATE order_line?
# 13 0x59DBA67188951C532AFC2598... 20.8006 2.2% 1503 0.0138 0.33 INSERT new_orders?
# 14 0xDADBEB0FBFA537F5D8722F42... 17.2802 1.8% 1290 0.0134 0.03 SELECT customer?
# 15 0x597A805ADA793440507F3334... 16.4394 1.7% 1516 0.0108 0.03 INSERT orders?
# 16 0x1B1EA568857A6AAC6544B44A... 13.9560 1.5% 1309 0.0107 0.05 SELECT new_orders?
# 17 0xCE3EDD98779478DE17154DCE... 12.1470 1.3% 1322 0.0092 0.05 INSERT history?
# 18 0x9DFD75E88091AA333A777668... 11.6842 1.2% 1311 0.0089 0.05 SELECT orders?
# MISC 0xMISC 39.6393 4.2% 16334 0.0024 0.0 <29 ITEMS>
# Query 1: 6.03 QPS, 4.93x concurrency, ID 0xCE367F5CFFCAF46E816F682E53C0CF03 at byte 30449473
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.03
# Time range: 2020-05-10 21:39:37 to 21:40:10
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 0 199
# Exec time 17 163s 302ms 1s 817ms 992ms 164ms 816ms
# Lock time 0 9ms 30us 114us 44us 84us 18us 36us
# Rows sent 0 199 1 1 1 1 0 1
# Rows examine 39 76.91k 306 468 395.75 441.81 27.41 381.65
# Rows affecte 0 0 0 0 0 0 0 0
# Bytes sent 0 15.54k 79 80 79.96 76.28 0 76.28
# Query size 0 74.30k 382 384 382.35 381.65 0 381.65
# String:
# Databases sbt
# Hosts localhost
# Last errno 0
# Users sbtest
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms ################################################################
# 1s ####
# 10s+
# Tables
# SHOW TABLE STATUS FROM `sbt` LIKE 'order_line6'\G
# SHOW CREATE TABLE `sbt`.`order_line6`\G
# SHOW TABLE STATUS FROM `sbt` LIKE 'stock6'\G
# SHOW CREATE TABLE `sbt`.`stock6`\G
# EXPLAIN /*!50100 PARTITIONS*/
SELECT COUNT(DISTINCT (s_i_id))
FROM order_line6, stock6
WHERE ol_w_id = 1
AND ol_d_id = 1
AND ol_o_id < 3050
AND ol_o_id >= 3030
AND s_w_id= 1
AND s_i_id=ol_i_id
AND s_quantity < 18\G
# Query 2: 436.38 QPS, 3.16x concurrency, ID 0x360F872745C81781F8F75EDE9DD44246 at byte 30021546
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.02
# Time range: 2020-05-10 21:39:37 to 21:40:11
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 15 14837
# Exec time 11 107s 44us 233ms 7ms 33ms 13ms 3ms
# Lock time 1 522ms 15us 496us 35us 84us 28us 23us
# Rows sent 20 14.49k 1 1 1 1 0 1
# Rows examine 7 14.49k 1 1 1 1 0 1
# Rows affecte 0 0 0 0 0 0 0 0
# Bytes sent 28 3.74M 252 282 264.46 271.23 8.65 258.32
# Query size 19 3.01M 209 215 213.05 212.52 2.85 212.52
# String:
# Databases sbt
# Hosts localhost
# Last errno 0
# Users sbtest
# Query_time distribution
# 1us
# 10us #
# 100us ##
# 1ms ################################################################
# 10ms #############
# 100ms #
# 1s
# 10s+
# Tables
# SHOW TABLE STATUS FROM `sbt` LIKE 'stock9'\G
# SHOW CREATE TABLE `sbt`.`stock9`\G
# EXPLAIN /*!50100 PARTITIONS*/
SELECT s_quantity, s_data, s_dist_01 s_dist
FROM stock9
WHERE s_i_id = 60407 AND s_w_id= 2 FOR UPDATE\G
Come puoi vedere dal risultato del rapporto pt-query-digest sopra, possiamo dividerlo in 3 parti.
Rapporto di riepilogo
Ci sono molte informazioni che puoi trovare nel rapporto di riepilogo, a partire dal server del nome host, la data in cui esegui il comando, le informazioni relative alla query sono state registrate, QPS e acquisizione del periodo di tempo. Oltre a ciò, puoi anche vedere le statistiche sui tempi su ciascun attributo.
# 12s user time, 170ms system time, 27.44M rss, 221.79M vsz
# Current date: Sun May 10 21:40:47 2020
# Hostname: n2
# Files: mysql-1
# Overall: 94.92k total, 47 unique, 2.79k QPS, 27.90x concurrency ________
# Time range: 2020-05-10 21:39:37 to 21:40:11
# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======
# Exec time 949s 6us 1s 10ms 42ms 42ms 2ms
# Lock time 31s 0 1s 327us 80us 11ms 22us
# Rows sent 69.36k 0 490 0.75 0.99 11.30 0
# Rows examine 196.34k 0 490 2.12 0.99 21.03 0.99
# Rows affecte 55.28k 0 15 0.60 0.99 1.26 0
# Bytes sent 13.12M 11 6.08k 144.93 299.03 219.02 51.63
# Query size 15.11M 5 922 166.86 258.32 83.13 174.84
Profilazione delle query in base al ranking
Puoi vedere informazioni utili nella query di profilazione.
# Profile
# Rank Query ID Response time Calls R/Call V/M Ite
# ==== ============================= ============== ===== ====== ===== ===
# 1 0xCE367F5CFFCAF46E816F682E... 162.6485 17.1% 199 0.8173 0.03 SELECT order_line? stock?
# 2 0x360F872745C81781F8F75EDE... 107.4898 11.3% 14837 0.0072 0.02 SELECT stock?
Ci sono molte informazioni come le query in esecuzione, il tempo di risposta della query (incluso il calcolo della percentuale), il numero di chiamate effettuate dalla query e le letture per chiamata.
Distribuzione query
Le statistiche sulla distribuzione delle query descrivono informazioni dettagliate in base al rango di profilazione della query, è possibile visualizzare la concorrenza QPS, le informazioni statistiche relative all'attributo della query.
# Query 1: 6.03 QPS, 4.93x concurrency, ID 0xCE367F5CFFCAF46E816F682E53C0CF03 at byte 30449473
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.03
# Time range: 2020-05-10 21:39:37 to 21:40:10
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 0 199
# Exec time 17 163s 302ms 1s 817ms 992ms 164ms 816ms
# Lock time 0 9ms 30us 114us 44us 84us 18us 36us
# Rows sent 0 199 1 1 1 1 0 1
# Rows examine 39 76.91k 306 468 395.75 441.81 27.41 381.65
# Rows affecte 0 0 0 0 0 0 0 0
# Bytes sent 0 15.54k 79 80 79.96 76.28 0 76.28
# Query size 0 74.30k 382 384 382.35 381.65 0 381.65
# String:
# Databases sbt
# Hosts localhost
# Last errno 0
# Users sbtest
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms ################################################################
# 1s ####
# 10s+
# Tables
# SHOW TABLE STATUS FROM `sbt` LIKE 'order_line6'\G
# SHOW CREATE TABLE `sbt`.`order_line6`\G
# SHOW TABLE STATUS FROM `sbt` LIKE 'stock6'\G
# SHOW CREATE TABLE `sbt`.`stock6`\G
# EXPLAIN /*!50100 PARTITIONS*/
SELECT COUNT(DISTINCT (s_i_id))
FROM order_line6, stock6
WHERE ol_w_id = 1
AND ol_d_id = 1
AND ol_o_id < 3050
AND ol_o_id >= 3030
AND s_w_id= 1
AND s_i_id=ol_i_id
AND s_quantity < 18\G
Ci sono anche informazioni sulla distribuzione del tempo di query, host, utente e database.
Monitoraggio query con ClusterControl
ClusterControl ha una funzione di monitoraggio delle query che puoi trovare nella scheda Monitoraggio delle query come mostrato di seguito.
Puoi vedere le informazioni relative alla query eseguita nel database, comprese le informazioni statistiche e il tempo di esecuzione. Puoi anche configurare l'impostazione Query Monitor che è ancora nella stessa pagina. C'è un'opzione per abilitare la query lenta e le query che non utilizzano l'indice facendo clic su Impostazioni
Devi solo impostare il Long Query Time, che è la soglia di la query che classifica a lungo in base al tempo di esecuzione. Inoltre c'è un'opzione per abilitare la query che non utilizza gli indici.
Conclusione
Il monitoraggio e l'analisi del carico di lavoro della query possono essere utili per conoscere e comprendere il carico di lavoro del database, sia pt-query-digest che ClusterControl Query Monitor forniscono informazioni relative alla query in esecuzione nel database per aiutarti a ottenere tale comprensione.