MongoDB
 sql >> Database >  >> NoSQL >> MongoDB

Come convertire il campo di una particolare colonna di un oggetto dtype in una colonna di frame di dati nei panda

Puoi creare un nuovo dataframe dalla colonna page_view_count e join colonna _id . Ultimo sort_index :

df1 = pd.DataFrame([x for x in df['page_view_count']]).join(df['_id'])
df1 = df1.sort_index(1)
print df1
                            _id  comments  detailed-rating  detailed-rating2  \
0      568a8c25cac4991645c287ac       NaN                2                 1   
1      568cd22e9e82dfc166d7dff1         1                1                 1   
2      568e5a38b4a797c664143dda       NaN                1                 1   
3      568e5a561ae56e09656bfb99       NaN                1               NaN   
4      568df45a177e30c6487d3600         1                1                 1   

   main-rating  thank-you  
0            2        NaN  
1            1          1  
2            1        NaN  
3            1        NaN  
4            1          1  

MODIFICA:

Ci sono ancora problemi con NaN con join.Solution è sostituire NaN per svuotare il dictionary di fillna e quindi crea Dataframe :

import pandas as pd
import numpy as np


df = pd.DataFrame([[1,  {'name':'Jack','email':'abc'} ], 
                     [2, np.nan],
                     [3,  {'name':'Ram','email':'xyz'}  ],
                     ], columns=['_id','page_view_count'])

print df[df['page_view_count'].isnull()].index
#Int64Index([1], dtype='int64')

print pd.Series([{}], index=df[df['page_view_count'].isnull()].index , name='page_view_count')
#1    {}
#Name: page_view_count, dtype: object

df['page_view_count'] = df['page_view_count'].fillna(pd.Series([{}], index=df[df['page_view_count'].isnull()].index , name='page_view_count'))
print df
#   _id                       page_view_count
#0    1  {u'name': u'Jack', u'email': u'abc'}
#1    2                                    {}
#2    3   {u'name': u'Ram', u'email': u'xyz'}


df1 = pd.DataFrame([x for x in df['page_view_count']]).join(df['_id'], how='right')
df1 = df1.sort_index(1)
print df1
#   _id email  name
#0    1   abc  Jack
#1    2   NaN   NaN
#2    3   xyz   Ram